Live-coding plug-ins Ul
with Wren

How it works?
Limitations?

5
Future: Meeting
Jan 11th 2022
p|ug (Happy new year!)

wren

Wren is a small, fast, class-based
concurrent scripting language

Think Smalltalk in a Lua-sized package with a dash of Erlang and wrapped up ina
familiar, modern syntax.

System.print("Hello, world!"
class Wren

flyTo(city
System.print("Flying to %(city)"

var adjectives = Fiber.new

"small", "clean", "fast"].each {|word| Fiber.yield(word

while (ladjectives.isDone) System.print(adjectives.call

Wren is small. The VM implementation is under 4,000 semicolons. You can
skim the whole thing in an afternoon. It’s small, but not dense. It is readable

and lovingly-commented.

Wren is fast. A fast single-pass compiler to tight bytecode, and a compact
object representation help Wren compete with other dynamic languages.

Wren is class-based. There are lots of scripting languages out there, but
many have unusual or non-existent object models. Wren places classes front

and center.

Wren is concurrent. Lightweight fibers are core to the execution model and
let you organize your program into a flock of communicating coroutines.

Wren is a scripting language. Wren is intended for embedding in

Getting Started

Contributing
Blog
Tryit!

GUIDES
Syntax
Values

Lists

Maps
Method Calls
Control Flow
Variables
Classes
Functions
Concurrency
Error Handling

Modularity

AP1 DOCS

Modules

REFERENCE
Wren CLI
Embedding

Performance

A language:

e easytointegrate

e kind-of like Lua

int3 Systems translated the main
implementation to D.

Demo time!

This is Distort, modified to use live-reload absolute path AND optimizations.
(Also everything was moved to the “reflow()” Wren callback because only reflow is called repeatedly.)

Let’s shape the “Drive” button.

Live-reload internals

Using live-reload necessitates absolute paths, not intended for release. (but optimizations = nice)

debug
// debug => live reload, enter absolute path here
context.wrenSupport.addModuleFileWatch("plugin”, °/my/absolute/path/to/plugin.wren’);
else
// no debug => static scripts, for release binaries
context.wrenSupport.addModuleSource("plugin”, import("plugin.wren"));

Because it’s hard to “forget” about a module once loaded, the whole Wren VM is restarted every time
the file change && about 200ms has elapsed.

=> You have to SPAM the save button in live-edit.

The things you can do from Wren

What can you do exactly from Wren?

Here is what you can do from Wren: (as of Dplug v12.3)

e Set positions of a UIElement at Ul creation or reflow.

static reflow() {
var S = UIL.width / UI.defaultWidth
($"_inputSlider").position = Rectangle.new(190, 132, 30, 130).scaleByFactor(S)

e Set/get values of fields in UIElement -derived classes that are marked with @ScriptProperty , at Ul creation or reflow.

static reflow() {
var S = UL.width / UI.defaultWidth
($"_inputSlider").litTrailDiffuse = RGBA.new(151, 119, 255, 100)

-

e Plus everything you can normally do in Wren.

ui.wrenis a sort of standard library for Dplug + Wren.
Overall, limited to Ul properties for now.

Expose your own properties

How to expose your own properties to Wren

class UIMyButton : UIElement

r
1

@ScriptProperty RGBA color;
@ScriptProperty RGBA colorPushed; // All that exposed to Wren if it knows about UIMyButton.

@ScriptProperty float animationSpeed;

-

Write a normal custom widget, and use @ScriptProperty on fields you want to be
accessed from Wren.

Expose your own properties

Supported types for @ScriptProperty

@ScriptProperty fields can be of the following types: (as of Dplug v12.3)

e bool

e byte / ubyte / short / ushort / int / uint
e float

® double

e RGBA

e enums or L16 (but this is lowered to integers)

Expose your own properties
P Y prop // Option 1:

— // UI constructor
context.wrenSupport.registerScriptExports/MyGUI;

// UI fields
2 ways: @ScriptExport
{

}

UIMyButton _mybutton;

// Option 2
context.wrenSupport.registerUIElementClass/UIMyButton;

e Registering classes enumerates @ScriptProperty fields and save
their layout.

e Property access are not calling Wren functions, but calling one
Wren function that directly write bytes into the objects.

e Consequently, you cant validate fields, or have complex prop.

FUTURE: Tuning PBR and audio variables with Wren?
- it’'s NOT possible for the Dplug user to expose arbitrary APIs
BUT you can expose @ScriptProperty fields in a custom widget...

=>you can “tune” anything with live-reload if you write (say) audio variables in your
onDrawRaw/onDrawPBR (!?)

Future widgets: UlAudioTuningCenter, UIPBRSettings?
Also: interactive color correction.

Wren: at what cost?

- ~200kbin binary

- 1to 10 mb of RAM. We have a GC again **

- slower at resize and Ul opening (don’t know how much)

- Wren significantly different from D (functional, dynamically typed, significant space...)
- super-limited for now: can’t create widgets, or change their visibility, or dirty them.

Most probably: live-reload it is going to save you a lot of time, and get better visual results.

All informations on the Dplug Wiki

https://github.com/AuburnSounds/Dplug/wiki/Making-a-Scriptable-Ul

See also: the Distort example which has a scriptable, resizeable, PBR Ul.

https://github.com/AuburnSounds/Dplug/wiki/Making-a-Scriptable-UI

Thank you

Questions?

